CHAPTER

COMBINATIONAL
LOGIC CIRCUITS

In Chapter Three individual gates were mvestlgated This 4.0 INTRODUCTION
chapter will use those gates in combination to produce ‘more
complex loglc functions. Techniques for simplifying these
complex functions will also be covered.
Simplification of logic circuits is a responsibility of the
designer.. Simpler circuits are generally more economic and
more reliable. The economy “is' achieved by using fewer
integrated circuits while reliability is achieved by havmg fewer
solder connectlons in the finished. product

Upon éémpleﬁon of this chapter you should be able to: 4.1 OBJECTIVES

. Sunphfy logic ekpréssions.
e Simplify logic circuits.
e Use the Kamaugh map to simplify logic circuits and

expressions.
41

Ren
Highlight

Ren
Highlight

Ren
Highlight

4 2 SUM-@F-
PRODUCT FOHM

The sum-of-product form of a logic circuit output looks like the
following examples:

. . x=ABD+ABD

f= AB+ABC+CD

These examples show that the output of a logic circuit
represented by x, z, or f are a logic one, or are true, when any of

* the logic products separated by the OR (+) designation are

satisfied. The logic expressions completely define a logic circuit's
operation in terms of the state of the logic inputs.

Logic equations may be formed directly from a truth table.
These equations may also be simplified using Boolean algebra or
more mechanical methods. Both types of simplification will be
covered. The logic equations shown in the above examples are .

called ‘minterm” expressions.

" Minterm ‘expressions are 1og1ca1 equations where the
logical product terms are separated by the logical sum operator.

Minterm expressions are . formed directly from truth tables.

Minterm expressions are also called sum-of-product expressions.

4.3 DESIGNING
COMBINATION

- CIRCUITS

Logic design begins with a problem statement. The -problem
statement is analyzed and translated into logic variable:inputs.
A truth 'table ‘is then constructed to show when.-a logic one
output is to be produced. Next a sum-of-product (minterm) logic
equation is then produced. Then a circuit is drawn from the
sum-of-product logic equation. These steps are illustrated by the
following example.

Problem statement: An alarm is to be used in an automated ink
bottling plant. A conveyer belt carries the empty ink bottles past
the filling spout. The alarm is to sound if any of the following
conditions occur:

Ren
Highlight
"HAND" Gates

Ren
Highlight

Ren
Sticky Note
Marked set by Ren

A. The ink tank runs empty.

B. There are no bottles on the conveyor belt even if ink is in
the tank. '

C. There is ink in the tank, bottles on the conveyor belt, and

electric power is lost.
The first step is to assign veriables to £he inputs.
I = ink in the tank |
B= bottles on the conveyor belt
P = electric power is on

Next a truth table is constructed using these variables for inputs
and indicating when the alarm is to ring by placing a one in the

output, X, column. A mmterm expressxen is then wntten (See

[able 4:1)

d|ea|a]l=|O|O|O|O]|=—
= 1elel = elele

: J@JOJOJOv
O_A.‘_A_A-A_A-Ax

X = [BP .+ IBP +1BF + IBP + IBP + IBP + IBF

Table 4-1 has a one in the output, X, for all cases where ink is not
present (I). In fact, the truth table shows that the alarm will not
sound, X=0, when ink is present and bottles are’ present and
power is on. Any other condition will sound the alarm.

Analyzing the minterm or sum-of-products expression
shows that the alarm system may be directly implemented by
1sing a seven input OR gate with each input being fed by a three
input AND gate. This drcuit implementation is shown in
Figure 4-1.

 TABLE 4-1. -Truth Table
and Minterm Expression.

43

FIGURE 4-1. Circut |
impiementation of Minterm

N [
Expression. :33

i

=)

Figure 4-1 could be further complicated By ihcluding
inverter drcuits to form the "NOT" inputs. This circuit will
fulfill the design objective of the problem, but may not be the
simplest circuit.

4.4 BOOLEAN One method of drcuit or minterm simplification is to use
SIMPLIFICATION Boolean algebra to remove logic redundancy. This method is
' ' based on the Boolean single and multivariable theorems. The
Boolean theorems are summarized in Table 4-2.
TABLE 4-2. Boolean Theorems. o I 3

Single Variable Theorems: ~ Multivariable Tﬁeorems:

(1)X+0=0 (5)X+0=0 (9) X+Y=Y4+X

@ Xe1=X ©X+1=1 (10) XeY=Y:X

3)Xe X=X MX+X=X (11) X+(Y+Z) X+Y)+Z=X+Y+2Z

4)XX=0 B)X+X=1 (12) X(Y*D=(XY)ZuXeYeZuXYZ
_ (13a) X(Y+2)=XY +XZ
(13b) W+X)(Y+2)=WY + XY +WZ + XZ
(14) X+ XY=X
(15) X+XY=aX+Y

These theorems may be apphed to the solut:on of the example
design problem of Table 41, L

X = IBF + TBP + T8F + BP + IBF + 18P +IBF
= 1B(P +P) + IB(P +P) + IB(F + P) +IBP

X = 1B + IB + IB +IBP

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

The first term of the original expresswn can be used agam with
the last term of the expression: .. . :

X=.I§+'«fB+I§+E(f§+IB)‘ ‘
X-IB+IB+IB+P :

Combmmg the ﬁrst term with both the second and third terms
give: ,

X= I(B+B)+B(I+I)+P

TBP:‘

~ This final expression is logically equivalent to the original
minterm expression. Figure 4-2 shows the final simplified
circuit to implement the alarm system of the original problem.
This solution is simpler, less expensive, and more reliable.

FIGURE 4-2. A Simplified

T ‘ Alarm Logic Circuit,
B , X
2]

Boolean algebra can be used. for logic circuit simplification,
but most students find the Karnaugh map technique to be easier.
The Karnaugh ‘map techmque will be dxscussed shortly

DeMorgan's theorem is important enough to command its own 4.5 DEMORGAN'S
major heading in any digital text. DeMorgan's Theorem wil THEOREM
allow the expression of logic equations in maxterm or product-

of-sum form. (See Figure 4-3)

A KiV=X-Y FIGURE 4-3. DeMorgan's
—_— - - Theorem.
B) XeY=X+Y

Since there are only two logic operators besides the NOT
function, DeMorgan's Theorem simply states that if an operator
is NOTed ‘it becomes the other. - The OR operator NOTed
becomes the AND operator and if the: AND operator is NOTed it
becomes the OR logic operator. The importance of this Theorem

will become increasingly apparent-in following discussions.

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

4

FIGURE 4-4. Logic Expressions,

46

.6 THE KARNAUGH

MAP

Truth Tables and K-Maps for
Two, Three and Four input
Variabies.

The Karnaugh map or K-map technique is a graphical device to
simplify logic equations or the output of truth tables following a
simple orderly process. The K-map technique can be used for
any number of variables, but becomes a little hard to handle
when more than four input variables are considered. For this
reason, the discussion of this technique will be limited to cases
having no more than four input variables.

A K-map like a truth table displays the relationship
between input variables and the desired or true output of a logic
expression or truth table. The K-map presents this information
as entries in boxes of a K-map rectangle. Figure 44 gives three
examples. The examples become more complex as more input
variables are involved. Note that each box in a K-map identifies
a specific and unique combination of the input variables.

Logic Expression
X =AB + AB
Truth Table : K-Map
Al B | X 1T B 1 B
0 10 O A 0 1
0 [1 1 A 0 1
1 [oTo Lt L
1 1 1 .
Logic Expression
X = ABC + ABC + ABC + ABC
Truth Table K-Map
. 1 0 1 0.1 1 A 1
0 1.0 1 1 AB |1 0 o]
0 1 0 0_ AB | 1 0
0 f 111] 0 AB | 1 0
11 0 | 041 1
1 | 0. 1 1 0
1 1 0 1
1 [1T 1]o0

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

. - Logic Expresslon

X= AECD-:-IB&D-:-ABCD-:-ABCD :
Truth Table ' ' " KM ¢

Al B|lC|D]J]X - Ch|Cb|cp|cb
o] o0 (O 0 0 0 1 0 0
0 [00 1 |1 (ABT 0T 1770 7170
o 1 01 31 10) -lAB] 0O | ‘1 1. [0
o0 o[1 [1 Jo AB] 0] 0 [0 0O
ol 1]0 Jo Jo" '
o[1]%0 1 1

0 1 1 0 0

0 1 1 110

1 0 0 [010~

110 [0 |1 |0

1] 01]Jo]o

1] 0] 1 11+ 1]o

1 1 | o0 [0]o
. 4 1] 0 1 1

11 [1 0]o

1 1 1 1 1

In viewing Figure 4—4 the followmg points should become
apparent:

L. The loglc équations, truth tables, and K-maps contain the
same information. -
2, The addition of an input variable doubles the number of

entries in the truth tables and K-maps.

3. The K-maps are organized in a precise way. The entries
across the top and down the side of the K-map are
arranged so that only one variable changes. These
patterns should be carefully and faithfully observed.

Once a K-map has been constructed for a problem. The
entries may be looped. The loops are formed around adjacent
1's. The 1's may be looped in groups of one, two, four, or eight.
Examples of looping are shown in Figure 4-5. Each loop of a K-
map represents a single term in the simplified logic equation-
larger and fewer loops result in the most simplification.

FIGURE 4-4.
Continued.

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

FIGURE 4-5. Examples .) c ___t c __ 3G ¢ _ .t B
oflooping. AB] 0 [0 | AB[o Ll o | AB[\1/ [0 | AB[O |1
AB[O 1 AB | AB[0 [0 | AB[1 |0
ABl O [\1/ | AB] 0T 0 | AB —Q_l ABl O | O
AB[0o [o |ABlL 0] o | AB M1lo | ABLo o0 i
(No loops, 1's not adjacent)
__4CD_CpD cgﬂ'_%o__ ___Cb_Cb_c¢cD_c¢D
AB o [4 1 . AB [0 & & 0
AB | 0 0 0 0 AB 1 1 1)
AB [0 0 0 0 AB | 0 T—8——t—b 0
AB ﬁ\r 0 1o 0 AB 0 0 0
__ _Cb _¢cb cpo_cDb
AB [0 0
AB | 0 [/1 1Y [0
AB [0 1 1/ [0
AB [0 o~17 0
__ ,Cb_Ccpb_cbp ,ch __ _CDb _Cpb _cpb_ch
AB T\4 0 0 AB | 0 ~Q | 0
AB [0 0 0 0 AB[0 [N 1Y/ 0
AB [0 0 0 0 AB [0 |\J 1/] 0
AB ?\ 0 0 1 AB [0 0~ (1)
1 L SN—
CO Cb cb cb
AB [0+t T 00
AB /1 1 1 1
AB 1 1 1
AB | 0 ~—~——0
__ Cb_Cp co c¢b ce—~D CD CD
AB | 1 1 AB 1\ | 0 0
AB | 0 0 0 0 AB |[[1 11/ 0 0
AB [0__I=2 3 0 AB [\ 1J10 0
AB |1 [1 1 ABI\Y T/ T0 0
Cb—CD CD CD
AB [/1 1N[O [0
AB [\! 1/ 0 |f1)
AB [0 0\
AB |0 0 0

Notice in the examples, that the edge boxes and corner
boxes are adjacent. Also note that 1's in diagonal boxes are not
adjacent. Any I's not included in a loop, lead to a term in the
final simplified logic expression.

To effectively use K-maps follow this procedure:

1. Construct the K-map from the original equatxon or truth
table.

2. Caref-ully examine the K-map for ad]acent 1's and loop
the largest number of adjacent 1s (two, four, or eight).

3. 'Loop any paxrs necessary to include any adjacent 1's that
' “have not yet been included in a loop

4. Loopany remammg single or isolated 1's.
B Any variable appearing in a loop in both its true and
complemented form is ehmmated
6. Form the simpliﬁ_ed sum of products equation from all

the terms generated by the loops.

Figure 4-6 shows some examples of the power of using the K-
map technique. Both the orxgmal and sunphfled loglc equation
is given for each. example '

/
Original Equation: X = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
- Lecpl cb| ¢D| -CD
AB V1. N 0 | O
AB NT-[L/[0 [0
AB | 0 0 _ 0
AB[0 J o J\iJ[o

Two loops may be drawn Only two terms will result.
Simplified Equation: X =AC + ACD

Original Equation: -ABCD + ABCD +ABCD + ABCD + ABCD +ABCD + ABCD

';_w,go‘ toi co| cp
AB [ge—F6—L 0

BRI] IN T D
AB [0 1\

~ Three loops may be drawn: Only three terms will result.

Simplified Equation: X = BG 4 AB + ABCD

FIGURE 4-6. K-Map

Simplification Examples.

49

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

50

FIGURE 4-7. K-Map Applied
to Ink Factory Alarm Problem.

FIGURE 4-8. Don't Care
Conditions in K-Map
Simplification.

In the examples, each loop that is drawn results in a single
term of the simplified equation. Ones may be used in more than
a single loop as shown in the second example. Isolated ones
become the most complex terms, as shown in the second
‘example.

. This technique can be applied to the ink factory alarm logic
of the original example shown in Table 4-1. Figure 4-7 shows the
original equation, the K-map with loops drawn, and the final
simplified equation. Note that the simplified equanon is the
same as the one obtained by applying Boolean algebra.

X =B TB'P+IBP+IBP+IBP+IBP+IBP |

- P P
1B ™N
B 1
B 1]

1B 1

Simplified Equatnon Xel+B+ 5

One last point when dealmg with K-maps. Somenmes a
"don't care” output exists in a truth table. A "don't care"
condition means that “the combination of input variables
controlling that output will never occur, therefore the output
could be listed as -either a 1-or 0 whxch ever would help the
simplification process. The "don't ‘care" condition is listed as X
in the output of the. truth table. When the K-map is drawn, the
X can be changed- to a 1 or 0 to expedxte simplification. (See
Figure 4-8)

Original Truth Table: |

A 1|l B L] D | X
0 0 0 0 0
0 0 0 1 0
| 0 0 1 | O 0
o To 1 1 o
0 1 0 0 0
S0t 0 4 1 1
0 14110 | 0
o-{ 11 1 1.1 | X
1 -3 01 0] 0 10O
1 7041 0.1 1- 10
ta [0 2] 06 |X
1 0 | 1 1 0
11 1 17 0 |-
1 1 0 1 1
1 1 1 1 1 0 ¢ O
1 1 1 1 1

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

K-Map with "Don't Cares”

__.CD| cD| CD| CD

AB | 0 0 0 0

AB | O 1 X 0

AB | 0 1 1A 0

AB | O 0o_l/o X
Change Don't Care \ Change Don't Care
to 1 to aid to 0 to eliminate
simplification. isolated condition.

__|Ccbl cD]| CD| CD.

AB| 0 0 0 0

AB|[O 1 1 0

AB | 0 1 1 0

AB | 0 0 0 0

Simplified Equation: @ X=8D

Figure 4-8 shows how careful consideration in recognizing
"don't care" conditions and later changing "don't cares" to ones
or zeros can greatly simplify a logic design. The trick is to
recognize early in the design any "don't care" conditions and
identify them by using X instead of 1 or 0 in the truth table.

FIGURE 4-8.
Continued.

The opening section of this chapter discussed the sum-of-
product form of equations. The implication was that there are
other ways to express a logic equation. This other way is called
the product-of-sums form. Figure 4-9 gives examples of this
form for logic equations.

Y=(A+B+C)(A+B+C)(A+B+C)
X=(+P+E)s(+P+E)
Z2=(A+B+C)A+B+C)(A+B+C) (A+B+0C)

To create the product-of-sums form involves the use of
DeMorgans Theorem. An example will be helpful in illustrating
the concepts involved.

4.7 PRODUCT-OF-
SUMS FORM

FIGURE 4-9. Examples of
Product-of-Sums Logic
Equation.

http:DeMorga.ns
Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight
Maxterm expression, "NOR" gates

Ren
Highlight

FIGURE 4-10. Steps in

Creating the Product-of-Sums

52

Logic Equation.

Typical Truth Table

<) s|ololo]o]
-f-ac;o-a:-aootn
= |o|=|o|«|o]=]lolo
alajo|=|ol=]|«|olx

Sum-of-Products Form X = ABC +ABC + ABC + ABC + ABC

— .C c
AB | 0 1/
AB | 1 0
AB [1
AB | 1 0

Simplified Sum-of-Products Form X = BC + AC + AB + ABC

To create product-of sums
form add an X column to the
original truth table.

o] =|-=|ololw

| =] | «|o|o]o]o|>»
-

=] o] | o] =|o]l=|olo
.A.Aoi_ao_a.aox
o] o] +| o] | o] o] | x|

-

Sum-of-Products Form for X~ X = ABC + ABC + ABC

ac AB s
Note: This is e
the "NOT" of = A§ e
the above K-map. 5 A 5 3

Simplified Sum-of-Products for X X = ABC + ABC + ABC

(Same as original - no loops could be drawn)

Apply DeMorgan's Theorem:
X = ABC + ABC + ABC
~ Gives:
X=(A+B+C)(A+B+C)(A+B+C)
In Figure 4-10, the final product-of-sums' equation is
logically equivalent to the original sum-of-products equation.

Figure 4-11 shows how these two equations would be
implemented. '

X =BC + AC + AB + ABC
B4\
C — / _g-—JD !
B -/ A —

o g—

B —

o]

X=(A+B+C)(A+B+C)(A+B+C)

)

v)
|

The two logic circuits are equivalent.

The reason for interest in having two forms for logical
equations is ease of implementation when using universal logic
gates; NAND and NOR. The sum-of-product form is most easily
implemented using all NAND gates, while the product-of-sums
form is most easily implemented using all NOR gates. The
examples given in Figures 4-10 and 411 are shown
implemented using all NAND or all NOR gates.

X = BC + AC + AB + ABC
AND OR

%é

aomp»@ » N> Olo

|

Double Inversion

FIGURE 4-10.
Continued.

FIGURE 4-11.
Implementation of the
Equations in Figure 4-10.

FIGURE 4-12. Logic
Implementation Using
Universal Gates.

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

FIGURE 4-12.

Remove Double Inversion
Continued. :

E— : x
p p—

5 =

¢

Final circuit using only NAND gates.

[

ofs

B —

X=(A+B+C)(A+B+C)(A+B+C)

OR AND

N MBI O »

A

Double inversion

Remove Double Inversion

B8

=D

=T \,
Final Circuit using
only NOR gates.

»

olm

The circuit using only NAND gates is logically equivalent
to the dircuit using only NOR gates. This can be verified by
setting all possible input states to the two circuits and observe
coincidence in the outputs.

4.8 THE EXCLUSIVE The final topic of this chapter deals with two gate structures that
OR AND are not basic gate structures, but whose functions occur so
EXCLUSIVE NOR frequently that they have earned their own symbols. These gate
CIRCUITS structures are often used in comparator circuits. Figure 4-13

indicates the symbols and truth tables for these logic gates.

FIGURE 4-13. The
A B X Exclusive OR Gate and
A —) 0 [0] 0O Exclusive NOR Gate.
X 0 1 1
B —’ 1 0 1
1 1 0
XOR
Exciusive OR Gate
A B X
A . 0 0 1
X 0 1 0
1 0 0
B (I
XNOR
Exclusive NOR Gate.
The output of the Exclusive OR gate is true only when the
two inputs are different. The output of the Exclusive NOR gate
is true only when the two inputs are equal. Each of these gates
may be produced using AND, OR, and NOT gates.
4.9 SUMMARY

This chapter has introduced Boolean algebra and Karnaugh map
techniques for simplifying logic circuits. Both single variable
and multivariable theorems were covered as well as
DeMorgan'’s theorem.

Product-of-sums and sum-of-products as two forms of logic
gates were introduced. Each of these forms are more easily
implemented by either NAND or NOR universal gates.

Two important gate functions; the Exclusive OR and the

Exclusive NOR were introduced.

L Determine the simplified logic equation for each of the K-
maps in Figure 4-14.
_i1cDh |[Cb] cp|cD cb| cpb|cp|cD
AB[T |1 |1 |1 AB[O [0 0 [0
AB | O 0 0 0 AB |1 1 0 1
ABlfo o o o AB [1 0 1
AB [1 o o [1 AB[O_ [0 [0 JO
@ ®)

4.10 REVIEW
QUESTIONS

FIGURE 4-14. K-Maps.

55

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

56

FIGURE 4-14.
Continued.

(@)

(b)

(c)

_lele
AB [0 [0
AB [0 | 0
AB [T | 1
AB [[X

©

Write the original equations used to form the K-maps of
Figure 4-14.

Simplify the equations in question 2 using Boolean
algebra-- show all steps. '

Sketch the outputs for the inputs shown in Figure 4-15.
. L] —

XOR

-

ST

! XNOR

In the space below, show how Exclusive OR and
Exclusive NOR circuits are constructed from AND, OR,

and NOT gates.

FIGURE 4-15. Outputs

for XOR and XNOR Gates.

57

