
t.~ .. 	 ,. ,;, . ,. 	 . '. 1

: , ~. . ,~.
~ . .

. : ~. . . : !.::-.~ , I:/

CHAPTER
CO'M:BINATIONAL

'. · i· ·r ·

:LO'GIC CIRCUITS

"'-......

In Chapter Three individual gates were investigated; This 4.0 INTRODUCTION
chapter will uSe those gates in combination' to produce more
cOlnJ:>1ex logic functicms. · Techniques 'for simplifying these
complex functions will also be covered.

Simplification of logic circuits is a responsibility of the
~e~igner. . Simpler ,cir~ts ~e . . generally . ~ore ~onomic ,and~ .
Inor~,""f6uaD'1e: " The '~ofioiny '~';'is, aChieved· by '-':tismg' fewer · '
int~grated - circuits while reliability is ·achieved by having fewer
solder 'connections in the finished. product.

..

Upon completion of this chapter you should be able to: 	 4.1 OBJECTIVES

• Simplify logic expressions.

• Simplify logic.circuits.

• Use the 	Kamaugh map to simplify logic circuits and

expressions.

41

Ren
Highlight

Ren
Highlight

Ren
Highlight

,';

4.3 DESIGNING
COMBINATION
,., CIRCUITS-

The sum-of-product form of a logic circuit output looks like the
following examples:

x=ABD+ABD
L~·; :.~ ;, . -: L~; I}~ ;) I ' ~ . , "i"

~. .
"
\ ,
I

.;
~

.
. • . . ' ~.,

f'..­z =A5 + '~i5 +EF ...JiJ'

f ~ AB.+'ABO+ CD
~ , :'.,: .:1 . ./-. . ~I~ - ! ~ . - ,

", ,\ ,

, These examples show that the output of a logic circuit
represented by x, Z, QT f are a logic one, or are true, when any of
the logic products separated by the OR (+) designation are
satisfied. The logic expressions completely define a logic circuit's
operation in terms of the state of the logic inputs.

Logic equations may be formed directly from a truth table.
These equations may also be simplified using Boolean algebra or
more mechanical methods. Both types of simplification will be
covered. The logic equations shown in the above examples are '­

calledMin"~t ' " " 1~'" , 'al ' ,' , ti " .. ,(" ~~; : ' : ", h_~teI'lI\" e"fr~~i9.r: , " '""; ,"
' ' erm: ' expressIons ' are 'logic ;-: ,equa ons ' wnere ~t e

logical prociuct te~ are separated bYtlle logical sum operator.
Minterm , -expressioAS ' are , formed " d,iiectly from truth -~bles.
Minterm expressions are also called sum-of-product expressjons.

Logic design begins with a, ,problem 'statement. The .'problem
statement is analyzed and translated into logic variable' inputs.
A~ :truth '!.able 'is ' ,then 'Constructed to shoW ' when, ~a, ;.lQgic one
output is to be produced. 'Nexf asum-oi~product (minteml) logic
equation is then produced. Then a ciicuit is drawn frOm the
sum-of-product logic equation. These steps are illustrated by the
following example.

Problem statement: An alarm is to be used in an automated ink
bottling plant. A conveyer belt carries the empty ink bottles past "­
the filling spout. The aIarm' is to sound if any of the following
conditions occur:

42

Ren
Highlight
"HAND" Gates

Ren
Highlight

Ren
Sticky Note
Marked set by Ren

A. 	 The ink tank runs empty.

B. 	 There are no bottles on the conveyor belt even if ink is in
the tank.

C. 	 There is ink in the tank, bottles on the conveyor belt, and
electric power i$.:lost.

The first step is to assign variables to the inputs.

I = ink in the tank

B = bottleS on the conveyor belt ·

P = electric power is on

Next a truth table is constructed using these variables for inputs
and indicating when the alann is to ring by placing a one in the
output,)('F~lpmn. ~minterm , ,~xpr~ipn~. then ~tten. _ (See
Iable4li) (,,\I >' ' ,',' ," , ".', "

I B" P ·· .·x ,
0 ,0,· · 0 t
0 0 1 1
0 1 0 1
0 1 1 1, 0 0 1
1 0 1 ,
"

.. 1 0 '1
1 1 1 0 ' .

Table 4-1 has a one in the output, X, for all cases where ink is not
present (I). In fact, the truth table shows that the alarm will not
sound, X=O,' when ink is present ' and bottles areiPresent and
power is on. Any other condition will souridthe alarm:

Analyzing the minterm or sum-of~products expression
shows that the alarm system' may be ' directly inlpleIriented by
ISing a seven input OR gate with each input being fed by a three

'--- input AND ' gate. This circUif implementation is shown in
Figure 4-1.

! .,;.1. ;." .: ,_,

. TABLEA-1.Truth Table '
and Minterm Expression.

43

FIGURE 4·1. Circuit !=f""""""\I---------------~..
Implementation of Minterm ..=L-I

ExpreSSion.:=D d

~_:=D_.----t9)~:-x

:=D ~
==D---------------------.~)

Figure 4-1 could be further complicated by including
inverter circuits to form the "NOT' inputs. This cirruitwill
fulfill the design objective of the problem, but may not be the
simplest circuit.

4.4 BOOLEAN One method of circuit or minterm simplification is to use
SIMP'LIFICATION .'..' Boolean algebra to remove lOgic redundancy. This method is

based on the Boolean single and. Iri'Lllpvariable theorems. The
Boolean theorems are summarized in Ta.ble-4-2~

TABLE 4-2. Boolean Theorems.
Single Variable Theorems: MultivanBbIe lheorems:

(1) X· 0.0 (5) X+ 0.0 (9) x:"V.Y';'X
(2) X·1 • X (6) X + 1 .1 (1Q) ~·Y.Y oX
(3) X·X. X (7)X+X.X (11) X ~ (Y + Z,)~ (X + Y) + Z. X + Y + Z _
(4) X· X. 0 (8) X + ~.1 (1' 2) X (Y. Z) • (Xo Y) Z. X· Y· Z. XYZ

(13a) X (Y +Z). XV + XZ
(13b) rN + X) (Y +Z).WY + XY + wz. + XZ
(14) X+XV.X
(15) ~+~. X+ Y

, ~ ..

"-, . .

These theorems may be applied to the solution of the example
design problem~f Table-4-1.. ,\

~~ '~: ~ ~".'~:- ,". .-­
X = IBf + ~f + lBP +IBP+ IB],' + IBP +mp

--- ; ;-"' ~ --- ­
X = IB(P + P) + IB(P +P) + IB(P + P) +IBP

44

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

- --

The first term of the original expression can be used again with

th~-~t !~~.\<?f~~ -tr"r~si_o,~:,:-;. . . .

x =IB +IB + IB+ paB + IB)

x=IB + IB + IB:+ P

CombininS the 'first term With both ' the .second .and third terms
give:

-X = 1(B+B) + B(I + I) + P

X=I+B+P !

This final expression is logically equivalent to th~ original
minterm expression. Figur~ ..4-2 shows the , final simpl,ified
circuit to implement the alarm system of ~the origin~ problem.
This solution is simpler, less expensive, and more reliable.

i---f))-x

Boolean algebra can be used for logic circuit simplification,
but most studenf(find, the Kamaugh map technique to be easier.
The Karnaugh'map technique will bediscus~ sh~rtly.

DeMorgan's theorem is important enoiign 'tocofnmand its own
major heading in any digital text. DeMorgan's Theorem will
allow the expression of logic equations in maxterm or product­
of-sum form. (See Figure 4-3)

(A) (i:Y).X.V
(8) X·y.X+y

Since there are only two logic ()perators besides the NOT
function, DeMorgan's _Th~remsimply states ' that if an operator
is NOTed ' it:becomes ~ the other. ' The OR' operator NOTed
becomes the AND 6per~tC)r and 'if the-ANI) operato~ is NOTed it
becomes the OR logic operat()r, 'The iinportance()tthis Theorem
will become increasingly appar.ent-in following ,~iscussions.

,',. :;,.

FIGURE.4-2. A Simplified
Alarm Logic Circuit.

4.5 DEMORGAN'S
THEOREM

FIGURE 4-3. DeMorgan's
Theorem.

45

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

4.6 THE KARNAUGH
MAP

FIGURE 4-4. Logic Expressions,
Truth Tables and K-Maps for

Two, Three and Four Input
Variables.

The Kamaugh map or K-map technique is a graphical device to
simplify logic equations or the output of truth tables following a
simple orderly process. The K-map technique can be , used for
any number of variables, but becomes a little hard to handle
when more than four mputva:riables are considered. For this
reason, the discussion ,of this technique will be limited to cases
having no more than four input variables.

A K-map like a truth table displays the relationship
between input variables and the desired or true output of a logic
expression or truth table. The K-map presents this information
as entries in boxes of a K-map rectangle. Figure 4-4 gives three
examples. The examples become more complex as ' more input
variables are involved. Note that each box in a K-map identifies
a specific and unique combination of the input Variables:

Logic Expression

X-AB+AB

Truth Table K-Map

A B X
0 0 ,0
0 1 1
1. 0 , ,0
1 1 1

Logic Expression

X., 'A§C + ASc + ABO +AB~

Truth Table K-Map

'A B C · X
0 0 0 t
0 : ,0 1 1
0 1 0 0
0 " 1 " 1 0
1 ,0 .() 1
1 0 1 0
1 1 0 1
1 1 1 0

46

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Logic Expressi~n 	 FIGURE 4-4,
, . . . Cohtinued,

'X.,; AseD '+. ABeD +. ABCO+. ABCD
+. .

TfuthTable '

A B C D X
0 0 0 0 0
Q , .O,~ 0 1 1
D " 0 ' ' 1 i " 0 0

' lL ',~~~" 1 1 0
'0 1 0 0 0
0 1 "-0 1 1
0 1 1 0 0
0 1 1 , 1 , .. ' 0
1 0 0 0 O·
1 0 O· 1 0
1 0 1 O· "., 0
1 0 1 1" 0, , 0 0 0
1 1 0 1 ,
1 1 1 0 0
1 1 1 1 1

Cl) Co co cO
AB 0 ' 1 0 0
~, 'Jt 1 '& ~
AS 0 1 , ' 1 0
AB,. 0 0 0 0

.'

In viewing Figure 44, the following points should become
apparent:

1. 	 The logic equations, truth tables, and K-maps contain the
same inform~tion.

2. 	 The addition of an input variable doubles the number of
entries in the truth tablesandK-maps.

3. 	 The K-mapsare organized in a precise way. The entries
across the top and down the side of the K-map are
arranged so that only one variable changes. These
patterns should be carefully and faithfully observed.

Once a K-maphas been constructed for a , problem. The
entries may be looped; The loops . are formed around adjacent
l's. The l's may be looped in groups of one, two, four, or eight.
Examples of looping are shown in Figure 4-5. Each loop of a K­
map represents a single term in the simplified logic equation­
larger and fewer loops result in the most simplification.

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

FIGURE 4-5. Examples
of Looping.

AB

AS

·AB
AS
AB
AB

AB
AB
AB
AS

~B~C; ~BmC~ AB AB
AB
AB 0 0

(No loops, 1 's not adjacent)

~I§n r#DI
CD CD CD CD

~B
AB

AB

AS

0 Q...­""'..Q. 0
0 (, '\ 0
0 \1 1) 0
0 0 ·U 0

CD CD CD CD ciS'
0 AB
0 AB

0
 AB
0 AS

0 n.­ .Q. 0
0 " "

0
0 Xl V ...Q.
0 0'­ ~ (,)

-
CD CD CD CD

~~tHI!~
CD CD CD

~-+-~4-~-h~~

~~~~4-~~~~ 

CD ciS 
AB 0 0
AB I+-:-+-:--\--+-O=---+-~O~ 

AS 0 0
AS ~-~~-+-O=---+-~O~ 

ABAB 
ABAS 

the examples, that the edge boxes and comer 

0 


, 


0 


CD 
0 
0 
0 
0 

Notice in 
boxes are adjacent. Also note that 1 's in diagonal boxes are not 
adjacent. Any I's not included in a loop, lead to a term in the 
final simplified logic expression. 

To effectively use K-maps follow this procedure: 

48 



--- - - -- -

1. 	 Construct the K-map from the original equation or truth 

table. 

, , 


2. 	 Carefully , e~a~e the , K-InaP for ad'jacent1's and loop 
the largest miInber of adjacent 1s (two, foUr, or eight). 

3. 	 LOQp aliy pa'its necessary tomdude any ad;acent 1'5 that 
' ],~ve not yetbeeri includea ili alOOp. ' " 

4. 	 Loop 'any reInaming single or isolated 1'5. , 

5. 	 Any variable appeariI).g in a loop in both its true and 
complemented form"is eliminated.. ' 

6. 	 Form the simplified s~ ,of products equation from all 
the terms generated by the loo~. 

Figure 4-6 shows some examples of the " power of using the K­
map technique. Both the original and sunplified logic equation 
is given for eacKexample. ' ,­

( 

Onginal Equation: X .. ABeD + ABCD + ABC0 +' ABCD + ABCD + ABeD 	 FIGURE 4-6. K-Map 
Simplification Examples. 

AB
AB 
AB 
AS 

cD. 
~1 

~ .. ­

0 
0 

CD 
1""'\ 

, Y 
0 
0 

CD' "CD 
0 0 
0 .-0 

/f\ 0 
_H1 0 

Two loops may ~ drawn: OnlY"two_tenns will result. 


Simplified _Equation: X .. AC +.ACD 


- --- - - -- - - - .
Original Equation: X - ABeD +·ABCD ~-A8CD + ABCD+ ABCD + ABCD + ABCD 

Three loops f!1aybe drawn: Only thteeterms will result. 


Simplified Equation: X .. sC +As + ABCiS 


49 

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight



In the eXamples, each loop that is drawn results ill a single 
"­

term of the simplified equation. Ones may be used in more than 
a~mgle loop as sllown in, the ~ond e~ple. Is<?lated ones 
become the most complex terms, as ' shoWI\ in the second 

. . : . . 

'example. 
This. technique ~b! applied to the ink fac:tory alarm logic 

of the original example:' ~hoWI\ in Table ~1. Figu.re4-? ,~hows the 
original equation, the X-map with loops draWn, and the final 
simplified equation. Note that the .simplified equation is the 
same as the one obtained by applying Boolean algebra. 

FIGURE 4·7. K-Map Applied x iBP +iSp +isp +isp'+ .isp +ISP +ISP 
to Ink Factory Alarm Problem. 

E . 

is 
is 
IS 

IS 


P P 
rr l"'­
J.. ." J,; 
1 " 

1 m 
. . " .. - ­

Simplified Equation: X ... I + S + P , 

One last point when dealing with K-maps. Sometimes a 
"don't care" output exists in a truth table. A "don't care" '­
condition . means , that "the ,comb~tion of input . variables 
controlling that output will never occur, therefore the output 
could be listed as either at -orO' which ever would help the 
simplification process:. The ·'d<?il't .. care'; condition is listed as X 
in the output of the truth" table. When . the K-map is drawn, the 
X can be changed to a il .or 0 to expeciite simplification. (See 

..,..... . 
Figure 4-8) 

FIGURE 4-8. Don't Care Original Truth Table: 

Conditions in K-Map 


Simplification. 


A 
',,' 

S .C 0 X 
0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 0 
0 O· "1 1 ,{) "". ;. 

0 1 0 0 0 
" 0 '1' :.:. ':'6 '\. 1 1 

'. () . " , 1 , , ~ ' 1 
, ..0 0 

0 :' "., 1. '.' .,.1 .. t X 
j .0 '.' 0 0 I 1) 

, 1 ':9,[ , ,{) .. '1. ,1 ' '0 
j .·:0 ,. ,-1 0 ·X , 0 , 1 0 
'1 , ~ '.~ 0 0 0 
1 1 0 1 1 
1 
1 

1 1 0 0 
1 1 1 1 

50 

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight



K-Map with -Don't Cares· 

AB 
AB 
AB 
AS 

--­CD -CD CD CD 
0 0 0 0 
0 1 X 0 
b 1 11 0 
0 0 /0 X 

Change Don't Care Change Don't Care 
to 1 to aid to 0 to eliminate 
simplification. isolated condition. 

AB 
AB 
AB 
AS 

CD CD CD CD 
0 0 0 0 
0 1 1 0 
0 1 1 0 
0 0 0 0 

Simplified Equation: X - BD 

Figure 4-8 shows how careful consideration in recognizing 
"don't care" conditions and later changing "don't cares" to ones 
or zeros can greatly simplify a logic design. The trick is to 
recognize early in the design any "don't care" conditions and 
identify them by using X instead of 1 or 0 in the truth table. 

FIGURE 4-8. 
Continued. 

The opening section of this chapter discussed the sum-of­
product form of equations. The implication was that there are 
other ways to express a logic equation. This other way is called 
the product-of-sums fonn. Figure 4-9 gives examples of this 
form for logic equations. 

Y. (A + B + C) (A + B + C) (A + B + C) 

. X =(i + P + E}t-(i + rs + E) 

Z '" (A + § + ~) (A + § + C) fA + B +C) (A + B+ C) 

To create the product-of-surns form involves the use of 
DeMorga.ns Theorem. An example will be helpful in illustrating 
the concepts involved. 

4.7 PRODUCT -OF­
SUMS FORM 

FIGURE 4-9. Examples of 
Product-of-Sums Logic 
Equation. 

51 

http:DeMorga.ns
Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight
Maxterm expression, "NOR" gates

Ren
Highlight



FIGURE 4-10. Steps in Typical Truth Table 
Creating the Product-of-Sums 

Logic Equation. 
A B C X 
0 0 0 0 
0 0 1 1 
0 1 0 , 
0 1 1 0 
1 0 0 1 
1 ' 0 1 0 
1 1 0 1 
1 1 1 1 

Sum-of-Products Form X - ABC +ABC + ABC + ABC + ABC 

AB 
AB 
AB 
AB 

C C 
0 1"­, 0 
1 , 
-1 0 

Simplified Sum-of-Products Form X - BC + AC + AB + ABC 

To create product-of sums 
form add an Xcolumn to the 
original truth table. 

A B C X X 
0 0 0 0 , 
0 0 1 , 0 
0 , 0 1 0 
0 1 1 0 1 
1 0 0 , 0 
1 0 1 0 ,, 1 0 1 0 
1 , 1 1 0 

Sum-of-Products Form for X X • ABC + ABC + ABC 

Note: This is 
the -NOT" of 
the above K-map. 

e- c 
1 0 
0 1 
0 0 
0 , 

Simplified Sum-of-Products for X 


(Same as original - no loops could be drawn) 


52 



Apply DeMorgan's Theorem: 

X.. ABC + ABC + ABC 

Gives: 

x -= (A + B + C) (A + B+ C) (A + B + C) 

In Figure 4-10, the final product-of-sums equation is 
lOgically equivalent to the original sum-of-products equation. 
Figure 4-11 shows how these two equations would be 
implemented. 

x.. eC + AC + AB + ABC 

C
B -..I~""" 

r-~~~~---; 

B-..--­
~--xA 

x.. (A + B + C) (A + B+ C) (A + B + C) 
A 
B 
C 

--x
A 
B 
C-1L-~ 

ihe two logic circuits are equivalent. 

The reason for interest in having two fonns for logical 
equations is ease of implementation when using universal logic 
gates; NAND and NOR. The sum-of-product form is most easily 
implemented using all NAND gates, while the product-of-sums 
form is most easily implemented using all NOR gates. The 
examples given in Figures 4-10 and 4-11 are shown 
implemented using all NAND or all NOR gates. 

X • BC + AC + AB + ABC 
AND OR 

B _---.r-~-":::J~ 

~---.-" 

D---x
AB ___-' 

A 
I
c---1....-" 

Double Inversion 

FIGURE 4·10. 
Continued. 

FIGURE 4·11 . 
Implementation of the 
Equations in Figure 4·10. 

FIGURE 4-1 2. Logic 
Implementation Using 
Universal Gates. 

53 

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight



FIGURE 4-12. Remove Double Inversion 
Continued. 

x 

• 

• 
X 
I 
c 

Final circuit using only NAND gates. 

X • (A + B + C) ( A + B+ C) (A + B + C) 

OR AND 

8 

A 

I 

1 

Double Inversion 

Remove Double Inversion 

Final Circuit using 
only NOR gates. 

The circuit using only NAND gates is logically equivalent 
to the circuit using only NOR gates. This can be verified by 
setting all possible input states to the two circuits and observe 
coincidence in the outputs. 

The final topic of this chapter deals with two gate structures that 
are not basic gate structures, but whose functions occur so 
frequently that they have earned their own symbols. These gate '--­
structures are often used in comparator circuits. Figure 4-13 
indicates the symbols and truth tables for these logic gates. 

A_.....r-...... 

C---,..,.., 

r---.....­

~-"""""I..--

4.8 THE EXCLUSIVE 
ORAND 

EXCLUSIVE NOR 
CIRCUITS 

54 



A B X 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

FIGURE 4-13. The 
Excfusive OR Gate and 
Exclusive NOR Gate.

:=)- >--X 

XOR 

Exclusive OR Gate 

A B X 
0 0 1 
0 1 0 
1 0 0 
1 1 1 

XNOR 
Exclusive NOR Gate. 

The output of the Exclusive OR gate is true only when the 
two inputs are different. The output of the Exclusive NOR gate 
is true only when the two inputs are equal. Each of these gates 
may be produced using AND, OR, and NOT gates. 

This chapter has introduced Boolean algebra and Kamaugh map 
techniques for simplifying logic circuits. Both single variable 
and multivariable theorems were covered as well as 
DeMorgan's theorem. 

Product-of-s~s and sum-of-products as two forms of logic 
gates were introduced. Each of these forms are more easily 
implemented by either NAND or NOR universal gates. 

Two important gate functions; the Exclusive OR and the 
Exclusive NOR were introduced. 

4.9 SUMMARY 


1. Determine the simplified logic equation for each of the K­
maps in Figure 4-14. 

AB AB 
AB AB 
AB AB 
AS AS 

CD CD CD CD 
1 , 1 1 
0 0 0 0 
0 0 0 0, 0 0 1 

CD CD CD CD 
0 0 0 0 
1 1 0 1 
1 1 0 1 
0 0 0 0 

(a) (b) 

4.10 REVIEW 
QUESTIONS 

FIGURE 4-14. K-Maps. 

55 

Ren
Highlight

Ren
Highlight

Ren
Highlight

Ren
Highlight



FIGURE 4·14. 
Continued. 

AS 
AS 
AS 
AS 

c· C 
0 0 
0 0 
1 1 
1 X 

(c) 

2. 	 Write the originaf equations used to form the K-maps of 
Figure 4-14. 

(a) 

(b) 

(c) 

3. 	 Simplify the equations in question 2 using Boolean 
algebra- show all steps. 

56 



Sketch the outputs for the inputs shown in Figure 4-15. 
FIGURE 4-15. OutputsA;~A~D--- . 	 for XOR and XNOR Gates. 

'-, 	 B---I. 
8 	 0 ! I . 

, -­ XOR 

XNOR 

5. In the space below, 
Exclusive NOR circuits 
and NOT gates. 

show how Exclusive OR and 
are constructed from AND, OR, 

57 


